CS 229 r : Algorithms for Big Data Fall 2013 Lecture 4 — September 12 , 2013
نویسندگان
چکیده
2 Algorithm for Fp, p > 2 2 2.1 Alternate formulation of Chernoff bound . . . . . . . . . . . . . . . . . . . . . . . . . 3 2.2 Returning to proof of Theorem 1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3 2.3 Digression on Perfect Hashing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4 2.4 Finishing proof of Theorem 1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
منابع مشابه
CS 15 - 859 : Algorithms for Big Data Fall 2017 Lecture 11 - Part 2 – Thursday 11 / 16 / 2017
متن کامل
Cs 229r: Algorithms for Big Data 2 Dimensionality Reduction 2.2 Limitations of Dimensionality Reduction
In the last lecture we proved several space lower bounds for streaming algorithms using the communication complexity model, and some ideas from information theory. In this lecture we will move onto the next topic: dimensionality reduction. Dimensionality reduction is useful when solving high-dimensional computational geometry problems , such as: • clustering • nearest neighbors search • numeric...
متن کامل